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Summary 

Evidently Proudman and Pearson's [1] low-Reynolds-number approximation scheme, as recently amended by 
the author, admits timewise oscillatory solutions. This is shown by relinquishing the implicit assumption that the 
flow is steady throughout, and letting instead each term in the asymptotic expansions consist of a sum of a 
steady component and a time-dependent one. When only one term is retained in the inner expansion, two terms 
in the outer and two in the recently-developed wake expansion, the solutions for the steady components are 
found to be determinable and equal to those recorded. However, the scheme also admits a large variety of 
non-trivial solutions for the time-dependent components. Attention is focused on those representing oscillatory 
modes of disturbance flow of indeterminable frequency and amplitude. 

In the inner field such single mode has the form of a rotationally symmetric pattern. Far downstream it is in 
the form of a sequence of vorticity packets of alternate signs, equally spaced along the wake's centre plane. This 
pattern moves with the velocity of the undisturbed stream. The flow field resulting from such a disturbance 
superposed on a uniform stream bears a remarkable resemblance to the Von Karman vortex-street. 

1. Introduction 

The incompressible flow past a cylinder placed in a steady stream is governed by the 
Navier-Stokes equations together with boundary conditions which are imposed on the 
obstacle and at infinity. The former set of conditions reflects the requirement that all 
velocity components should vanish. At infinity one imposes the requirement that the 
disturbance created by the cylinder should be finite. The point made here is that although 
this differential system reflects a steady set-up, it admits solutions which represent 
timewise-oscillatory motion. 

These admissible solutions are developed within the framework of Proudman and 
Pearson's [1] low-Reynolds-number matched-asymptotic-expansion scheme, as recently 
amended by the author [2]. It is thus assumed that, apart from an inner and an outer 
region, there is also a wake region which possesses distinct characteristics. Therefore, the 
unsteady solutions developed here, like the steady one presented in [2], consist of three 
expansions. 

* On leave from the Department of Fluid Mechanics and Heat Transfer, Tel-Aviv University, Ramat-Aviv, 
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These solutions are obtained as follows. The stream function in the inner, outer and 
wake regions is expressed by the small-Reynolds-number expansions recorded in [1] and 
[2]. Also, the scaling of the length coordinates in the three domains is adhered to. 
However, the proposed analysis is made more general by assuming that every term in 
each of the three expansions consists of a sum of a stationary and a time-dependent 
component. The characteristic time for the unsteady components of the inner expansions 
is a2/~ ,. In the outer field and in the wake ~,/U 2 is the characteristic time. Here a is the 
radius of the cylinder, v is the kinematic viscosity and U is the velocity of the undisturbed 
stream. 

This procedure is carried out so as to obtain one term in the inner expansion and two 
terms in each of the other two expansions. Obviously, the well-known solutions for the 
steady components are recovered. The time-dependent additions to the inner, the outer 
and the wake expansions are found to be governed, respectively, by the unsteady Stokes 
equation, the unsteady Oseen equation and a fourth-order equation in the co-ordinate 
normal to the flow direction. The former two were derived in Bentwich and Miloh's [3,4,5] 
analyses of the flow caused by a cylinder and a sphere departing impulsively from rest 
and acquiring a constant velocity. In these flows the unsteadiness soon dies out. In the 
flows under consideration, the uniform steady streaming motion is similarly dominant, 
whence the applicability of these equations to the case at hand. 

Despite this mathematical similarity, Bentwich and Miloh's works on transient low-Re- 
ynolds-number flows radically differ from the present one. There, solutions were obtained 
for flow fields which meet all the requirements of certain differential systems. However, 
this is an investigation as to whether time dependence can emerge despite the fact that it 
is not induced. Evidently, there is such a possibility. Indeed, the procedure described 
admits a variety of time-dependent solutions. Many of these are of little interest because 
they represent unsteady disturbances in a highly-viscous flow, which decay and vanish 
either as time elapses or as they get convected and diffused throughout the infinitely wide 
stream. Attention is focused on disturbance-flow solutions which persist and have 
non-vanishing trace in all three domains, and it is found that timewise-oscillatory ones 
have these features. Within the framework of approximation adopted, the amplitude and 
frequency characterizing these cannot be determined. The net result is that in addition to 
the recorded steady solution for the flow under discussion, one gets persistent time-depen- 
dent indeterminable disturbances. 

It follows that within the context of Proudman and Pearson's scheme the solution for 
the flow past a cylinder is not unique, unless steadiness is postulated. Indeed the author is 
unaware of a proof of uniqueness for unsteady two-dimensional flow past a cylinder 
which satisfies the requirement that the disturbance flow at infinity should be finite. (See 
the comprehensive and up-to-date study by Ladyzhenskaya [7]). 

The article is concluded with a discussion of the refinements that could be achieved by 
calculating higher-order terms. In these subsequent stages of the analysis there is 
evidently coupling between the oscillatory and the steady components. It follows that the 
time-independent components of the higher-order terms in the asymptotic expansions are 
also indeterminable. So are the higher-order coefficients in the formula for the drag. 

2. Analysis 

The differential system governing the flow under discussion comprises the Navier-Stokes 
equations, together with conditions imposed on the velocity components on the cylin- 
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drical surface and at infinity. As explained, close to the cylinder, a and a2/v characterize 
space and time variations, respectively. The stream function is normalized with respect to 
Ua. Hence, in the inner field the governing equation reads 

=:(  ) 0  + Re 0(V2+' +) - vaq~ (1) 
o, -v2 1 a(x, y) 

where Re, the Reynolds number, is Uav -1. On the cylinder the following conditions 
prevail: 

~b=O,/Or=O at r = l .  (2),(3) 

Here (x, y)  are cartesian coordinates and the origin is fixed at the centre of the cylinder. 
They are related to the polar ones (r, 0) in the usual manner, and ~,2 is the Laplace 
operator in these coordinates. 

It is further assumed that in the outer field, that is, far from the obstacle and away 
from the half-plane downstream of the cylinder's axis, the characteristic length and time 
scales are independent of a. The first is the well-known viscous length (v/U). The time 
scale appropriate for the outer field is v/U 2, (see [3] and [5]). The independent variables 
characterizing variations in the outer field are therefore related to (r, t) by 

R = r R e ,  T = t R e  2. 

It follows that the governing equation prevailing there reads 

0 (~-2,)  + Re 0(~-2~, 
0-T O(X, Y) = ~4~ (1') 

where (X, Y) are the outer cartesian coordinates, and ~-2 is the Laplace operator in terms 
of these coordinates. At infinity the following conditions must be satisfied: 

+- Y/Re as R ---) oc. (4) 

As shown in [2], the width of the wake is of O(a), and variations across it are 
characterized by that length. The axial and the time variations there are as in the outer 
field. With these scaling the governing equation reduces to 

04~/0y 4 + O(Re 2) = 0 (1") 

where the terms of O(Re 2) are negligible in the context of this work. It follows that the 
equation governing the stream function in the wake region does not contain X or T 
derivatives. Consequently the X and T variations inside the wake are those prevailing at 
its outer limit y --* oo. 

As explained, the non-uniqueness considered here is within the framework of Proud- 
man and Pearson's structure of solution as amended by the author. Thus, there is an 
inner, an outer and a wake expansion which are expressed as follows: 

q/")- Y/Re + (A/Re)  q~(2 °), 

(o¢ "7Oy, -a¢ WTax) = (1, o) + o( A ). 

(5) 

(6) 

(7) 
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The bracketed superscripts indicate regions, while the terms in each expansion are 
numbered sequentially. The gauge function A is defined as 

A = ( In ( I /Re)  + k)  -1. 

Here k is a constant, and Kaplun [8] showed that there is merit in letting it be 3.703. The 
advantage of expressing the wake-flow solution in terms of the velocity components will 
become apparent later. 

If steadiness is assumed to prevail throughout, then the leading inner term in 
Proudman and Pearson's solution is 

~] ' )= +~9 = (r In r - r /2  + 1 / 2 r )  sin O. (8) 

The subscript s is introduced here so as to stress that it was derived under that 
assumption. Moreover, to within errors of O(A/Re)  and O(A), respectively, this matches 
expansions (6) and (7) when these are also assumed to be time-dependent. However, 
evidently the expression given by equation (8) together with the associated terms in the 
outer and wake expansions do not constitute the only admissible solution. The form given 
by relationships (5), (6) and (7) admits also time-dependent ones. They are derived by 
formally expressing the terms in these expansions as follows, 

~(,, ) = ~b~! + q/,,~ ) , (9) 

in which the bracketed superscript can be i, o or w and the subscript u implies 
unsteadiness. Since the flow at infinity is steady, it is required that a ~ ° ) / a y  and 
aq~) /Oy  should vanish. However, there is no need to rule out a priori any of the other 
unsteady components. 

The time-dependent components of the leading inner term is found to be governed by 
the unsteady Stokesian equation 

a 2) 2.,,.) 0. (10) 

This is derived by substituting expansion (5) in equation (1) and retaining only the 
highest-order contribution. By similarly processing expansion (6), together with equation 
(1'), one finds that the time-dependent component of the disturbance stream function is 
governed by 

which is the unsteady Oseen equation used in [3]. A time-dependent addition to the 
recorded steady-flow solution is consequently admissible if there are non-trivial solutions 
for +~iu), q,~) and the corresponding time-dependent terms in expansion (7). These must 
satisfy equations (10), (11) and (1"), the matching requirements, as well as conditions (2), 
(3) and (4). 
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3. Admissible oscillatory modes 

The following solution for "fh,a'u) is proposed: 

s: .{ ] ,',(n(r, 0, t ) =  exp(loOt) Ao(oa ) (Ko( i ~ r  ) - K o (  i ~ ) ) +  KI( i ~  ) In  r ' f l u  ae 

+ 
,,=1 IB,,(~) sin(nO) 

X -~K.( i~ /~r ) -  K .+ i (~) r -  ~ - 1  

(12) 

This is, in effect, a double summation of modes, each characterized by a frequency oa and 
a certain angular dependence. It is therefore a very general expression for the inner-field 
disturbance. Indeed, in terms of the Fourier integral with respect to o0 and the summation 
over n, varieties of time and angular dependences, respectively, can be expressed. 
However, as shown below, this form gets considerably trimmed. So is the choice of 
mathematically admissable disturbances which are also of interest to this piece of 
research. 

Examine first the admissibility of a single rotationally-symmetric mode designated by 
q,]i)(r; oa)exp(ioot). It is recast in terms of the outer variables, and its components are 
approximated as follows: 

Ko( iv/~ -) = - ( ' / +  l n i ~ -  A- '  + k - I n  2) + O(A ' Re2), 

KI(i~) = R e - ' ( i a )  ,/2 + [(v + l n i ~ -  A- '  + k - In 2)(~-~ Re) /2]  + O(Re),  

in r = l n  R - k + A  -1. (13) 

Here ~, is Euler's constant, while ~2 is the frequency measured in terms of the outer time 
scale, which is therefore equal to ~0 Re -2. The outer limit of the mode under discussion is 
evidently 

1 / 
A0~i)(r; ~o) exp(icot) - ~£#~(y + In i ~ +  In R -  in 2) 

x exp(iaT). (14) 

It consequently gives rise to a contribution of O(A/Re)  to the outer expansion and this 
falls within the structure of solution given by relationships (5), (6) and (7). 

Call the counterpart of that mode to "f2,,'t'(°) O~2O)(R, 0; f~) exp(if~T). The amplitude of 
the vorticity associated with it is given by 

V20(2°' = P exp( X/2)Ko(~R/2  ) + X (15) 
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where 

40 +1. 

In this, the first term represents the amplitude of the vorticity field produced by the 
obstacle and prevailing close to it. Thus, this field satisfies equation (11) and its amplitude 
decays along any ray 0 = const. It also matches the vorticity in the inner field, and it is 
thus found that its multiplier is given by 

P =  ix/]~+a 

where a is arbitrary. The second term, X, represents the amplitude of the vorticity 
transported from the wake into the outer field. It is obtained by integrating equation (15) 
and thus deriving a solution for q4 °) which holds everywhere except along 0 ~< X < ~ ,  
Y-- 0. It is given by 

q~2 °) = ~ f o  ~ e x p ( - i n ~  {exp(X/2)Ko(fk /2  ) + [7 + ln(~'R/4)] } d~ (16) 

where 

.~=X--~, ~2=)~2 q_ y2. 

The process of integration is very similar to that carried out in [3]. However, there the two 
limiting values of the second derivatives of the disturbance stream-function at 0 < X < ~ ,  
Y=0_+ where found to differ. In the case at hand it is the limits of the third 
Y-derivatives of 0~2 °) that are equal in magnitude but of opposite signs. It follows that in 
the case at hand there is vorticity flux from the half-plane 0 < X < ~ into the outer field, 
whence the term X- There is no such flux in the case treated in [2]. The solution (16) is in 
a useful form because it clearly shows that that half-plane is excluded from the outer 
field. An alternate form of solution is developed in the Appendix. The merit of the latter 
is that it provides an expression for X and for the solution q~2 °) far downstream. 

The unsteady components in the wake expansion are calculated by the standard 
procedure. Thus, as a first step, q~z°)(X, Y, ~2) is recast in terms of (X, y) as follows: 

A ~2o ) A ~ O % ~ ) ( X , O + ) R e n y , ,  0 < X < ~ , y > < 0 "  
Re =Reen=0= OY" " 

(17) 

This formula holds arbitrarily close to the plane X > 0, Y = 0, but not on it because the 
latter is excluded from the outer domain. Accordingly, the limiting values of q~{2 °) or its 
derivatives may not be the same when that plane is approached from above and from 
below. But this ambiguity is immaterial because the unequal third derivatives contribute 
to equation (17) terms of O(A Re2). However, within the context of the present analysis, 
only the terms of O(A) in expansion (7) are accounted for. 

Truncating the summation of equation (17) accordingly, one gets 

Oq,~2 o~ A 
- a = ~ - - - - ~ , ( w ~ ( x ,  A 0~2o ) ~'-~a'(°)tX, O) + (X, O)y y). 

Re Re v2 ~ Re " 
(18) 
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Note that both the zeroth and first derivatives are the limits obtained by approaching to 
plane 0 < X < m, Y = 0 from above and from below, and that they are equal. Further- 
more, this sum is not only the limit of 0~2 °) at the wake. It is, in fact, the solution sought 
which represents the amplitude of the oscillatory disturbance in the wake flow. For, 
clearly, q,~2 W) exp(i~2T) satisfies equation (1"). It is also compatible with the form (7) and 
matches the outer solution. Moreover, by replacing ~ by ~ Re 2 and following the 
procedure outlined in [6] one can show that the right-hand side of relationship (18) 
matches AO~'). 

It has thus been shown that modes which are rotationally symmetric in the inner field 
are admissible. The author cannot prove that others are not but this seems to be the case. 
For, if one recasts ,r,~) in terms of the outer variables, one finds that the components ' f l u  

( r  n cos(n0), r n sin(n0)) become R e - " ( R  n cos(n0), R ~ sin(n0)), just as the lnr  term on 
the right-hand side of equation (12) contributes lnR to the right-hand side of relationship 
(14). However, the latter gives rise to the lnR term in the integrand of equation (16), 
which is just admissible. The terms R n ( c o s ( n O ) ,  sin(n0)) give rise to contributions that 
are not. 

4. The form of A o 

The requirement that the disturbance flow under consideration should fall within Proud- 
man and Pearson's scheme is evidently sufficient to determine the 0 dependence of ,¢,~i~ ' ~ l u ,  

but not its time dependence. For when An(c0 ) and B,(~o) for n > 1 vanish identically, the 
outer limit of the inner solution has the following form: 

~,~A'""'_ aRef" Ao(a R e 2 ) ( i a ) - l / 2 [ K o ( i ~ R )  + (Y + l n ( ¢ ~ ) ) ]  e i a r d a .  

(14') 

Conformity with Proudman and Pearson's scheme is attained if the non-vanishing 
transform A 0 is such that the Fourier integral is bounded by two constraints. It must be 
at most of O(Re -2) as Re approaches zero. Also, as T is increased, it must remain finite. 
However, these two upper-bound type of constraints admit a wide spectrum of transforms 
A 0 representing disturbances that decay either as time progresses or as they get diffused 
and convected throughout the wide stream. It is well-known that perturbations in a 
viscous flow behave like that. Hence these are of little interest. As explained, the purpose 
of this piece of research is to identify unsteady disturbances that persist as time 
progresses and are significant over a wide portion of the flow domain. 

So as to trim the form (12) further accordingly, one must identify the disturbances that 
are to be discarded. A typical one is a mode in which ~ is complex with positive 
imaginary part, which represents temporal decay. Indeed such modes were not included in 
the form (12). An example of a disturbance one would like to discard, but which is more 
difficult to identify, is that represented by 

A 0 = [ i ~ ( 1  + ~ 2 ) K 0 ( i ~ )  ] -1 (19) 

For with this transform the Fourier integral of relationship (14') is O(A/Re),  which is 
vanishingly smaller than Re -2. Therefore, the matching counterparts of ,¢,~') at the outer ~Vlu 
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and wake domains are similarly small. Hence, though admissible, this disturbance is of no 
interest because it is significant only in the near field and has negligible traces elsewhere. 
This behavior is understandable noting that a measure of this disturbance's strength is 
given by the normalized shear at the obstacle's surface, 

A(~2~id/Or2)r=l=Af£ eio,,(1 + w 2 ) - l  d~=k~re-(2~)l , i ,  (20) 

which has a finite peak and decays with time. Thus, when transported, this perturbation 
becomes very thinly spread over the wide flow domain. 

The last example suggests that if the disturbances sought herewith do exist, then they 
are represented by transforms A 0 with which the Fourier integral of relationship (14') 
actually reaches the above-stated allowable upper limits. In other words, that integral is 
not only of O(Re-2) at most, but actually has a non-vanishing component of that order. 
Moreover, as T is increased, that component must not only remain finite but also 
non-zero. There is evidently an obvious choice of A 0 with which these requirements are 
satisfied. In fact the author knows of none other. It is given by 

- '  , 
(21) 

were the exponents are bounded thus: 

m 

~, kj = 1, (22) 
j = l  

while ~(o~) is a smooth function of ~0 which is finite, and integrable over - oo < ~0 < oc. 
Here ~0j are (real) frequencies measured in terms of the inner time scale. In terms of the 
outer and wake time scale these are ~2j which are equal to ¢oj Re -2. Therefore, when ,lu't'~i) 
is recast in terms of the outer variables, f(¢0) reduces to f(0), Re -2 can be factored out of 
the integral in relationship (14') and the first of the two above-stated requirements is 
satisfied. Then by imposing the second, additional information concerning the exponents 
is gathered. For, as explained in Lighthill's [9] and other texts on Fourier transforms, their 
large T behavior is determined by the singularities of the integrand. In the case at hand 
the contributions of the j ' t h  singularity in the right-hand side of relationship (14') is 
proportional to (T) k,-1 exp(i~jT). Consequently, a disturbance that is compatible with 
Proudman and Pearson's scheme, and also persists as T is increased and prevails in all 
three domains, is characterized by the form (21) in which at least one of the exponents is 
unity and none is bigger. 

Admittedly, these considerations leave A 0 somewhat loosely defined. However, the 
undetermined elements in the definition of A 0 effect only the near-field flow pattern. The 
R and T dependence of the timewise-persistent outer limit of ~lu, l,<i) due to the singularity at 
¢o = &, is given by relationship (14) in which f~ is replaced by £, or by a sum of such 
terms if more than one exponent is unity. In such contribution(s) the undetermined part 
of A 0 plays the role of a mere factor of the form 

, o , ) k '  . . .  - - '  
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Consequently, the outer- and wake-flow solutions representing lasting and widely-preva- 
lent disturbances are those given by equation (16) and (18), or by a summation of 
expressions of that form which are characterized by distinct frequencies. The magnitude 
of these disturbances cannot be determined within the framework of approximation 
adopted here. However, their behaviour is interesting and merits a thorough exposure, 
which is presented in the next section. 

5. Far-field behaviour 

The oscillating disturbance flow due to a single mode possesses interesting features far 
downstream. For, when X is very large, then with a fixed value of T the streamlines' 
pattern representing the solution for ~2 °) is as shown in Fig. 1. It is infinitely periodic in 
X and moves steadily in the axial direction with the velocity of the undisturbed stream. 
Note that in this figure the abscissa is Y and the length scale for this variable is u/U. The 
wake region is of O(a) and is thus, by comparison, extremely thin. It is represented in this 
figure by the line Y-- 0. 

The persistence of the pattern shown in Fig. 1 is at first glance surprising. For the 
closed-loop streamlines constitute evidence that there exist in the flow vorticity packets of 
alternate signs, and that these retain their strength as they move steadily downstream. Yet 

C 5  
0.0. 0.O 

o o 5 o ?  

× 

Figure 1. Oscillatory disturbance flow pattern far downstream. 
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it follows from the Navier-Stokes equations and the physical nature of the medium, that 
in the presence of viscosity vorticity decays, particularly when the Reynolds number is 
small and that effect is dominant. However, the point made here is that the flow pattern 
shown in Fig. 1 does not represent either reality or an exact solution of the Navier-Stokes 
equations. It is an approximation and should so be viewed. It shows that most of the 
vorticity generated at the obstacle's surface indeed decays, in compliance with the theory 
of viscous flows. The persistent pattern is induced by a residual, very small amount of 
vorticity, which decays at a rate that is too slow to be accounted for by the approximate 
solution. 

The last statement shall now be mathematically substantiated. Clearly equation (15) is 
recovered by taking the Laplacian of relationship (16), anywhere except along the line 
Y = 0, 0 < X < oo. The first term on the right-hand side of equation (15), which represents 
the amplitude of the vorticity close to the obstacle, decays and eventually vanishes as one 
proceeds downstream along any line I Y I = constant, no matter how close it is to the X 
axis. By elimination the residual vorticity, which produces the closed-loop streamlines, is 
that present in the wake which diffuses into its close vicinity in the outer field. Indeed, 
according to the Kaplun-Proudman and Pearson's approximation scheme, the vorticity in 
the wake does not decay because, unlike the governing equations for the other regions, 
(10) and (11), equation (1") does not contain temporal or axial derivatives. 

It remains to be shown that the residual vorticity is in the form of packets of alternate 
signs but equal strengths. To show this, use is made of the Fourier-integral form of 
solution for q~z °), which is developed in the Appendix along the lines of Bentwich's [6] 
treatment of semi-bounded flow. Taking the Laplacian of (A.2) one finds that the 
amplitude of the vorticity associated with oscillatory disturbance-flow is given by 

V 2q~(2°) = (i~ + a)'/2~(irr/2)f_ L exp(iyX)[y 2 + i(y + ~)]--1/2 

xexp(qZ[~2+i(~+fa)ll/2y)[a(y+a)+(i~(~+a)) -'] dr, YXO, 
(23) 

where the branch of the square root is so chosen that its real part is positive. As in the 
previous section, the asymptotic behaviour of the Fourier transform is obtained by 
examining the singularities of the integrand. Evidently those associated with the brac- 
keted expression raised to the power - 1 / 2  represent the manner of decay of the first 
term on the right-hand side of equation (15). The residual portion of the vorticity, which 
is present in the wake and does not decay as one proceeds downstream, is due to the 
singularity at 3' = -f~, and it is given by 

X exp(i~2T)= V 2q~{2°)exp(if~T) 

- (if~ + oL)l/2n(s) e x p ( -  i~2 ( T -  X)) exp( T I~]Y ), 

X ~ + o¢, Y = constant >< O. (24) 

Here H is Heaviside's unit-step function implying that there are vorticity packets for 
X ~ ~ ,  but not upstream. 



6. P o s s i b l e  r e l a t i o n  to the Von Karman vortex-street 
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The complete flow-field downstream, namely that consisting of a single oscillatory 
disturbance mode superposed on a uniform stream (the steady disturbance ~2s'l'(°) dies out 
there), is shown by Figs. 2a and 2b. The latter, depicting a relatively strong disturbance, 
bears a marked resemblance to the Von Karman vortex-street. It is also noted that with a 
single mode the inner solution A(~i~ + ~a,J'r'(i)~ shows that the stagnation points oscillate 
about their mean position, as observed. This remark should not be construed as a claim 

Y~ 

I 2 X 

qJ:2.o 

1.5 

1.0 

0.5 

0 .0  

-0 .5  

-1 .0  

-I.5 

-2.0 

Figure 2a. Flow pattern in the wake; weak oscillatory disturbance. 
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Figure 2b. Flow pattern in the wake; strong oscillatory disturbance. 
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that the solution proposed actually represents this phenomenon. Indeed, within the 
framework of this article, the questions what is A0(~0 ) or that part of the transform which 
leaves a lasting trace, and how is it determined, are left unanswered. Therefore, one does 
not know whether the far-downstream oscillatory pattern is weak, strong or exists 
altogether. Furthermore, the proposed analysis can be expected to hold when the 
Reynolds number is at most unity, while that phenomenon emerges when it is about 70. 
Nevertheless, in discussing the possible relationship between the analysis and the phe- 
nomenon, there are two points of similarity that cannot be ignored. 

Firstly, the similarity is not only between the two patterns but also between the 
mechanisms of the vortices' production and transport. For with a single mode of 
disturbance the inner-field oscillatory portion of the vorticity is 

V 2,r,{i) i~Ko( i~r  ) exp(i~ot). 5 " l u  (25) 

Thus, over time periods 7r/¢0, packets of vorticity of equal strength but alternate senses 
are produced at the surface. In the observed phenomenon it is concentrated vortices 
rather than packets which are generated. But in both cases the vorticity is convected 
straightly downstream. 

Secondly, though it has not been proved, it appears that of the solutions admitted by 
the approximate low-Re-analysis, only those having trailing strings of vorticity packets 
persist as time progresses and have traces in all three domains. The only disturbances 
observed in the higher-Re-flow past a cylinder are those giving rise to the phenomenon 
under discussion, which are very similar in their form. 

These two points of similarity can be partially explained as follows. Due to the general 
tendency of vorticity fields to vanish, disturbances can last and widely prevail only if they 
have the above-described rather unique structure. Thus, as explained, the strings of 
vorticity packets retain their strength, due to the slow rate of decay which characterizes 
the wake in the low-Re-solution presented herewith. The very same selection mechanism 
could produce the Von Karman street, if a low-rate-of-decay wake region is also present 
when Re is above 70. Because of the multitude of minute random perturbations, which 
are present in the oncoming stream and which may be of various shapes and forms, only 
those typified by strings of concentrated vortices will survive. 

This explanation admittedly raises many questions which shall not be addressed here, 
e.g., how do small perturbations become sizeable and observable? However, it is sup- 
ported by the somewhat conspicuous absence of three-dimensional vortex-street-like 
disturbances in the flow past a sphere. This is taken as an indication that there is no wake 
in this flow, and indeed Proudman and Pearson's solution for that case consists of only an 
inner and outer expansion. 

7. Determinacy and uniqueness 

It follows from the analysis that all modes which are rotationally symmetric in the inner 
field are admissible. Therefore, there appears to be no way to determine which, if any, 
will emerge. Put otherwise, the Proudman and Pearson type of solution for the differential 
system, consisting of the Navier-Stokes equations and the stated conditions, is not unique. 

Note that, although it is the allowed unsteadiness which gives rise to indeterminacy, 
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the latter is not to within additional oscillatory terms, as the analysis carried so far 
suggests. For the equation governing the next term in expansion (6) reads 

( _ ~ + ~ 3  _ ~-2)~-2~,(f) = 3 (~2+(2°)'3(X, Y) +(2°)) (26) 

It therefore follows that, if %(20) contains modes of frequencies ~ and - ~ ,  then the 
right-hand side of this equation will contain a steady term proportional to the product of 
their amplitudes a(f2) and a ( - ~ ) .  The solution for ~b{3~,'~ ) would therefore differ from that 
recorded, which is based on the premise that the unsteadiness is ruled out. It follows that 
in the well-known expression for the drag, the coefficient of O(A2/Re) is determinable to 
within a term which is in the form of a sum of products a(f~)a(-~2) over all the 
frequencies that typify oscillatory modes. 

Since the solution proposed is valid mathematically, its apparent indeterminacy is 
rather disturbing when viewed from a physical standpoint. Experiments with cylindrical 
obstacles placed in a wide stream repeatedly produce the very same outcome, i.e. the same 
pattern and the very same drag. In other words nature is clearly deterministic. Therefore, 
if the differential system under discussion produces many outcomes, as it seems to, then it 
follows that it does not embody all the fluid mechanics' principles employed by nature. In 
other words, the considerations of continuity, stress vs. rate-of-strain relation and 
momentum conservation appear to admit a number of flows. To determine which will be 
physically realized, additional principle(s) or consideration(s) must be invoked. 

Observe that when reference was made to the term indeterminacy it was cautiously 
qualified "apparent" because the multitude of admissible solutions is inexact. However, it 
seems unlikely that it is this inexactness that gives rise to non-uniqueness. The Kaplun- 
Proudman and Pearson scheme essentially replaces the original governing equation (1) by 
others. Of these it is equation (1") that differs most from the original one and, as 
explained, underestimates the impact of viscosity. It follows that the exact solutions for 
the oscillatory modes represent disturbances that decay along the wake. But these are just 
as admissable as the solutions proposed. 

It therefore seems that it is condition (4) that opens the door to the non-uniqueness. 
For all that it requires is that the disturbance created by the obstacle should be finite. 
This condition is therefore rather loose when compared with (2) and (3), which fix the 
values of + and its derivative in a pointwise manner on r = 1. But, and this is important, 
nothing as definite as conditions (2) and (3) can be prescribed at infinity, and for two 
reasons. Firstly, because if the stream is unbounded then the drag is balanced by its 
momentum deficiency. Since both quantities are a-priori unknown, then the differential 
system would have become over-determined had the disturbance stream-function at 
infinity been forced to vanish identically, or had been otherwise prescribed in a pointwise 
manner. The second reason is that, when standard wind - -  or water - -  tunnel experi- 
ments are conducted, care is taken that the flow should be uniform and steady upstream. 
Downstream the flow is left uncontrolled. Thus, when the Reynolds number is high 
enough, vortex streets and other deviations from uniformity occur there. Now, outside 
laboratory environments, in a truly unbounded flow past an obstacle, the flow down- 
stream is even less controlled. Consequently the looseness of condition (4) and the 
disturbances it allows are an inherent feature of the flow under discussion. 
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8. Concluding remarks 

As a topic the investigation of low-Reynolds-number flows is not too popular, because 
such flows are rarely encountered. Therefore it may have been overlooked that these flows 
can be relatively easily analysed and that such analyses raise rather fundamental ques- 
tions. The Von Karman street phenomenon will be addressed elsewhere. The uniqueness 
problem appears, at present, too complex to be tackled. 
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Appendix 

Following [6], the solution for the amplitude of the oscillating disturbance stream-func- 
tion in the outer field is written as follows: 

q¢2°) = £ 2  exp(iyX)[ A_+ (y) exp(-T-(y2 + i(y + fa ))l/2y) 

+B+_(7) exp(T-(y2)'/2Y)] dy, Y~O. (A.1) 

The branch should be chosen such that the real parts of both square roots are positive. 
The four functions A +(y) and B +_(7) are determined by matching A~] i) with (A/Re)q¢2 °), 
and by imposing the requirement that both expressions for q¢2 °) and the first three Y 
derivatives obtained thereof should be equal over - o o  < X <  0, Y= 0. As could be 
expected with the form (A.1), it is impossible to make ~2 °) and its derivatives continuous 
over 0 < X < oo too. 

The resulting solution is evidently 

,/¢2 °) = (i~ + oL)l/2~'~ ( rr/2)f~_m exp(iTX) 

X[('~ 2 "4-i(~ + y) ) - , /2  exp(T (y2 + i(y + ~2))'/2Y) 

-(-12)-'/2exp(T(72)~/2Y)](7+fa)-~{8(7+fa)+(irr(7+fa)) -' } d'l. 
(A.2) 
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Thus, replacing (X, Y) by (x, y) Re, g by ~0 Re -2 and ~, by B/Re, one finds that the 
inner limit of this component of the outer solution is 

(A/Re) , (2  ° ) -  + i ~ )  -~/2 exp( T- ( f l2+  i~o)~/2y) 

--(~2) 1/2 exp( -T-(fl2)l/2y)] exp(iflx) dfl, 

(A.3) 

and this is in agreement with equation (14). N o w  q¢2 °) and its second Y derivative are 
continuous on - ~ < X < 0, Y = 0 because the right-hand side of equation (A.2) is even 
in Y. The continuity of OeO(z°)/aY follows from its vanishing on Y = 0, - oc < X < 0. The 
two limits of  the third derivatives obtained from equation (A.1) are 

0 3 ~ ° ) / 0 Y 3  1 0 =  + ( i a  Jr- 0 / ) l / 2 ( a ) ( ' f l ' / 2 )  

× £ ~  exp(iyX){ 6(y + ~2)+ (i~r(y + f~))( 1)} dy, (A.4) 

and these differ in their signs. However, the expression between the curly brackets is the 
Fourier transform of Heaviside's unit-step function. Consequently both limits of  the third 
derivatives vanish over - ~ < X < 0, Y = 0, as required. They are found to be of equal 
magnitude and opposite sign along the other half of the X axis. 
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